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Abstract 

Because there is no commonly accepted view of what makes for good writing, automated essay 

scoring (AES) ideally should be able to accommodate different theoretical positions, certainly at 

the level of state standards but also perhaps among teachers at the classroom level. This paper 

presents a practical approach and an interactive computer program for judgment-based 

customization. 

This approach is based on the AES system, e-rater®. Through this new approach, a user 

can gain easy accessibility to system components, flexibility in adjusting scoring parameters, and 

procedures for making scoring adjustments that can be based on only a few benchmark essays. 

The interactive prototype program that implements this approach allows the user to customize 

e-rater and watch the effect on benchmark essay scores as well as on score distributions for a 

reference testing program of the user’s choice. The paper presents results for the use of this 

approach in customizing e-rater to the standards of different assessments. 
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As early as 1966, Page developed an automated essay scoring (AES) system and showed 

that an automated rater is indistinguishable from human raters (Page, 1966). In the 1990s, more 

systems were developed; the most prominent systems are the Intelligent Essay Assessor (Landauer, 

Foltz, & Laham, 1998), Intellimetric (Elliot, 2001), a new version of the Project Essay Grade 

(PEG; Page, 1994), and e-rater® (Burstein, Kukich, Wolff, Lu, & Chodorow, 1998). 

With all of the AES systems mentioned above, a scoring scheme is developed by 

analyzing a set of typically a few hundred essays written on a specific prompt and prescored by 

as many human raters as possible. In this analysis, the most useful variables (or features) for 

predicting the human scores, out of those that are available to the system, are identified. Then, a 

statistical modeling procedure is used to combine these features and produce a final machine-

generated score of the essay. 

As a consequence of this data-driven approach of AES, whose aim is to best predict a 

particular set of human scores, both what is measured and how it is measured may change 

frequently in different contexts and for different prompts. This approach makes it more difficult 

to discuss the meaningfulness of scores and scoring procedures. 

e-rater Version 2 (V.2) presents a new approach in AES (Attali & Burstein, 2006). This 

new system differs from the previous version of e-rater and from other systems in several 

important ways that contribute to its validity. The feature set used for scoring is small, and the 

features are intimately related to meaningful dimensions of writing. Consequently, the same 

features are used for different scoring models. In addition, the procedures for combining the 

features into an essay score are simple and can be based on expert judgment. Finally, scoring 

procedures can be applied successfully to data from several essay prompts of the same 

assessment. This means that a single scoring model is developed for a writing assessment, 

consistent with the human rubric that is usually the same for all assessment prompts in the same 

mode of writing. In e-rater V.2, the whole notion of training and data-driven modeling is 

considerably weakened. 

This paper presents a radical implementation of the score modeling principles of e-rater 

V.2, which allows a user to construct a scoring model with only a few benchmark essays of his 

or her choice. This can be achieved through a Web-based application that provides complete 

control over the modeling process. 
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The paper describes the statistical approach that allows modeling on the basis of a small 

set of essays and presents experiments for validating the approach. The success of the procedure 

was investigated in three experiments: (a) a simulation study based on essays written by students 

in Grades 6–12, (b) an experiment using state assessment essays and teachers, and (c) an 

experiment with GRE® essays and raters. 

Description of e-rater Scoring and the On-the-Fly Application 

The on-the-fly approach rests on an adaptation of the three scoring elements that are 

regularly used for e-rater V.2 scoring. In its regular implementation, e-rater scoring is based on 

a large set of analyzed essays in order to estimate parameters necessary for scoring. On the other 

hand, in the on-the-fly implementation, previously collected data and results are used as the 

source of parameters. The regular approach is termed here estimated-parameter (EP) scoring, 

whereas the on-the-fly approach is termed predetermined-parameter (PP) scoring. 

In short, scoring with e-rater V.2 proceeds (both in EP and PP scoring) by first 

computing a set of measures of writing quality from the essay text. These measures have to be 

standardized in order to combine them into an overall score. The standardized measures are 

combined by calculating a weighted average of the standardized values of the measures. Finally, 

this weighted average is transformed to a desired scale, usually a 1–6 scale. 

The feature set used with e-rater includes eight measures: grammar, usage, mechanics, 

style, organization, development, vocabulary, and word length. Attali and Burstein (2006) 

provided a detailed discussion of these measures. In addition, two prompt-specific vocabulary 

usage features are sometimes used. However, in contrast to the standard eight features, the 

prompt-specific vocabulary features require a large sample of prompt-specific essays in order to 

calculate their values. The other features require essay data only to interpret the values in the 

context of producing an overall score. This data requirement for the prompt-specific vocabulary 

features is prohibitive for their use in on-the-fly scoring. Attali and Burstein also showed that 

these features’ contribution to scoring in many types of prompts is small and that their reliability 

is low compared to the other features. 
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Scoring Example 

Table 1 shows a simplified scenario that exemplifies the scoring process for a single 

essay and introduces the parameters necessary for scoring. This example has only two features, 

A and B. In order to score essays, the means, SDs, and relative weights of features are needed, in 

addition to the correlations between features and final scaling parameters. The means, SDs, 

feature correlations, and weights that are used in scoring are presented in the first two rows of the 

table. These can be obtained in different ways under EP or PP scoring, as is discussed below. 

The raw feature values for the example essay are 110 and .35, and the standardized feature 

values are 1.0 and 0.5. 

Table 1 

Scoring Example 

 M SD 

R with other 

feature 

Relative 

weight 

Example raw 

value 

Example 

scaled value 

Feature A 100.00 10.00 0.5 70% 110.00 1.00 

Feature B   0.30 0.10 0.5 30%   0.35 0.50 

Standardized  

weighted 

score, Z   0.00 0.89a     0.85b

Final score, E   3.5 1.2    4.65 

a Based on a .5 correlation between two features. b Weighted average of standardized feature 

values. 

The third row in Table 1 presents the distribution parameters and example value of the 

standardized weighted scores. These scores are computed as the sum product of standardized 

feature values and their weights, which for the example essay is equal to 0.85 (1.0 x 70% + 0.5 x 

30%). The mean of this distribution is equal to 0 by definition. The SD of the standardized 

weighted scores depends on the intercorrelations between features. In this example there is only 

one such correlation (between A and B), which is assumed to be .5. To compute the variance of 

the standardized weighted scores, the formula in Equation 1should be used: 
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Where wi is the feature weight, rij is the intercorrelation of features, and the standardized feature 

SDs are equal to 1. Thus, the SD of standardized weighted scores should be .89 (the square-root 

of .79). 

The fourth row in Table 1 shows possible (human) criterion scaling parameters that the 

final scores should be scaled to, in this case with a mean of 3.5 and SD of 1.2. When the 

standardized weighted score value of .85 is scaled according to these parameters, the resulting 

final score is 4.65. 

To summarize, e-rater scores are calculated as a weighted average of the standardized 

feature values, followed by applying a linear transformation to achieve a desired scale. The 

following sections outline how this procedure can be implemented with a very small set of 

essays: on-the-fly. 

Determining Feature Weights On-the-fly 

The first element in the scoring process is identifying the relative feature weights 

(expressed as percentages). Although relative weights could (in the EP approach), be based on 

statistical optimization methods, like multiple regression, Attali and Burstein (2006) suggested 

that nonoptimal weights do not necessarily lower the agreement of machine scores with human 

scores. Specifically, they argued that a single program-level model should be preferred over the 

traditional prompt-level models on theoretical grounds, although they are nonoptimal for each 

individual prompt. In addition, an analysis of a wide range of scoring models (from sixth graders 

to college students and English-as-a-second-language learners) showed that the statistically 

optimal weights of these diverse models were remarkably similar (Attali & Burstein, 2006). 

Finally, Ben-Simon and Bennett (2006) studied the effect of setting weights in e-rater on the 

basis of judgments by content experts with good results. To summarize, PP alternatives in setting 

relative weights can be based on either content expert judgments or previous models of similar 

assessments. 
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Determining Feature Distributions On-the-Fly 

The second element in the scoring process is identifying the means and SDs to be used in 

standardizing each feature values, and the correlations between features to be used for 

calculating the variance of the standardized weighted scores. Obviously, many essays (and their 

corresponding feature values) are needed to obtain an accurate estimate of the feature means, 

SDs, and intercorrelations for a relevant population of essays. However, PP scoring requires an 

alternative approach. Instead of estimating feature distributions and intercorrelations every time a 

scoring model is developed, typical estimates from previous assessments can be used. These 

typical values may not be accurate for a particular assessment, but results in this paper suggest 

that it is possible to use them without compromising the quality of scores. 

Determining Final Scaling Parameters 

The last step in scoring requires scaling the standardized weighted scores to final scores. 

This step should be based on a paired set of parameters: the mean and SD of the standardized 

weighted scores (in the third row of Table 1) and of corresponding human scores (in the fourth 

row of Table 1). 

In the usual EP scenario, where a scoring model is developed based on a large set of 

training essays with associated human scores, these paired sets of parameters are developed 

based on the same training sample. The mean and SD of standardized weighted scores are based 

on feature parameters and intercorrelations (as in the example above), and the final scaling 

parameters are equal to the mean and SD of the corresponding human scores for the training 

sample essays. 

Final scaling in PP scoring is similar, in that a training set of human-scored essays is still 

used to estimate the two sets of scaling parameters. However, in PP scoring the training set is 

used only for scaling. Feature standardization and feature weights are not based on this training 

sample, but on past results. Therefore, the training sample in PP scoring is termed the scaling 

sample. 

In PP scoring, standardized weighted scores are developed for the scaling sample, based 

on the predetermined parameters. Similarly to the EP scenario, the mean and SD of the 

standardized weighted scores for the scaling sample (labeled MZ and SZ) as well as their 

corresponding human scores (labeled MH and SH) can be computed. However, it is important to 

note that MZ and SZ are not necessarily equal to the original values that were obtained in 
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developing the scoring parameters that were reproduced for PP scoring. For example, in PP 

scoring, MZ is not necessarily equal to 0. However, in PP scoring as in EP scoring, the relation 

between MZ-SZ and MH-SH determines the final scaling of scores. Scaling of a standardized 

weighted scores (Z) to final e-rater scores (E) is done by matching the mean and SD of the 

scaling sample e-rater scores to the human mean and SD scores in the scaling sample. This is 

accomplished through Equation 2, applied on any essay, for either a scaling sample essay or a 

new essay: 

( )H
Z H

Z

SE Z M M
S

= − +  (2) 

From Equation 2 the scaling parameters can be extracted. The slope and intercept of the linear 

transformation are shown in Equation 3: 

H H
H Z

Z Z

S SE Z M M
S S

⎡ ⎤ ⎡
= + −⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

 (3) 

After applying this formula to the essays in the scaling sample, the mean and SD of e-rater 

scores in the scaling sample will be the same as the human scores. 

Statistical Issues 

In the previous section, PP scoring was described in relation to regular EP scoring. The 

PP approach is based on borrowing parameters from previously developed scoring models. In 

this section, the effects of adopting incorrect parameters and the influence of essay training 

sample size are explored from a statistical point of view. 

Expected Magnitude of Errors in Predetermined Parameters 

PP scoring is based on previous estimates of feature distributions obtained from an 

independent set of essays. The assumed feature distributions (those adopted from previous 

results) may be different from the actual feature distributions in the population of essays for 

which the new PP scoring is developed. It is important to evaluate the effect of discrepancies 

between the assumed and actual feature distributions on the quality of scoring. 

Discrepancies are possible in means and in SDs of features. Discrepancies in feature SDs 

will affect the actual weight that features will have in the final e-rater score. In general, when the 
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actual SD of a feature is relatively larger than its assumed SD, it will have a larger influence in 

the final score than its assumed weight. The effect is relative to the actual-to-assumed SD ratio 

for other features. That is, if all actual SDs are larger (to the same degree) than assumed, the 

actual weights will correspond to the assumed weights. Discrepancies in feature means will not 

have an effect on relative weights and should not have an effect on scores, since the final scaling 

is based on essay scores in the training sample. 

Therefore, in this section an estimate of the possible magnitude of discrepancies in 

feature standard errors (that is, in sample SDs) is computed. In the following section, the effect 

of these possible discrepancies on relative weights is estimated. 

In order to evaluate the magnitude of possible discrepancies in feature standard errors, a 

large dataset of actual essays was analyzed. It includes essays of students in Grades 6–12 that 

were submitted to an online writing instruction application, CriterionSM, developed by ETS. In 

addition, the dataset includes GMAT essays written in response to issue and argument prompts 

and Test of English as Foreign Language™ (TOEFL®) essays. Overall, 64 prompts are included, 

with an average of 400 essays per prompt. Table 2 shows the mean and variability in the sample 

SD of e-rater feature values across prompts. Also shown is the coefficient of variation (CV) for 

this same statistic, a measure of relative variability of scores. CV is computed as the ratio of the 

SD of a variable (in this case the variable is the sample SDs) to the mean of the variable and is 

expressed in percentages. Table 2 shows that, except for one higher CV of 26%, all CVs are 

between 11% and 15%. This result is based on an average sample size of 400 essays. 

Through these CV values, it is possible to estimate the possible magnitude of 

discrepancies in feature SDs in a typical application of PP scoring. If the mean SD values were 

chosen as the assumed SDs of feature values, we could expect discrepancies between assumed 

and actual SDs of around 15%. 

Effect of Errors in Feature SDs on Relative Weights 

The purpose of this section is to provide an estimate, through a simulation, of the effect 

of different magnitudes of discrepancies in feature SDs on discrepancies between assumed and 

actual relative weights. In this simulation, 10 standard normal variables that simulated possible 

(standardized) essay features were generated for 1,000 essays. The number of features (10) 

chosen for the simulation was arbitrary; the purpose of the simulation was to demonstrate 

different degrees of discrepancy in feature SDs. The feature values were generated such that the 
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correlation between features was .35. This correlation was selected for two reasons: It is the 

median intercorrelation among e-rater features in the dataset analyzed in the previous section, 

and simulating different intercorrelations would be very difficult. 

Table 2 

Sample Distribution (Across 64 Prompts) of the Feature SD Statistic 

Feature M SD CV 

Grammar 0.72 0.08 11% 

Usage 0.65 0.10 15% 

Mechanics 0.95 0.11 12% 

Style 0.08 0.02 26% 

Organization 0.53 0.06 12% 

Development 0.44 0.06 14% 

Vocabulary 5.18 0.80 15% 

Word length 0.29 0.04 15% 

Note. CV is coefficient of variation, the ratio of SD to mean score. 

The main purpose of the simulation was to observe the effect of wrong assumptions about 

feature SDs in modeling. Therefore, the assumed SDs of the features varied, some smaller and 

some larger than actual SDs, which were always equal to 1 (assumed and actual SDs are 

presented in Table 3). 

Equal weights (10%) were used in computing scores for each essay in order to simplify 

the comparison of discrepancy effects on the different features. Standardized weighted scores 

were computed in the prescribed manner by standardizing the features and then using equal 

weights to sum the feature values. The standardization was computed once with the actual SD 

values and once with the assumed values. 

To evaluate the relative influence of each feature (and corresponding discrepancy) on the 

two kinds of standardized weighted scores, a multiple regression analysis of the composite scores 

on the features was performed, and the standardized parameter values for each feature were 

compared. These standardized parameter values are presented in Table 3. Obviously, the actual 

(or true) parameters are all equal to 0.1, because all simulated features have the same influence 

on the composite scores. However, Table 3 shows that when the assumed SDs were used in 
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standardization of features, features with smaller assumed SD resulted in larger observed 

influence on composite scores. The larger observed influence was proportional to the ratio of 

actual-to-assumed SD. For example, the assumed SD of Feature 7 was 15% larger than its actual 

SD. Consequently, when features were standardized based on their (erroneously) assumed SDs, 

the observable influence of this feature on composite scores was about 20% smaller than its true 

influence. 

Table 3 

Effects of Discrepancies Between Assumed-to-Actual Feature SDs on Standardized Betas 

    

Standardized betas 

based on  

Feature 

Assumed 

SD 

Actual 

SD 

Inverse 

SD ratio 

Assumed 

SD 

Actual 

SD Beta ratio 

1 0.55 1.00 1.82 0.17 0.1 1.66 

2 0.65 1.00 1.54 0.14 0.1 1.40 

3 0.75 1.00 1.33 0.12 0.1 1.22 

4 0.85 1.00 1.18 0.11 0.1 1.07 

5 0.95 1.00 1.05 0.10 0.1 0.96 

6 1.05 1.00 0.95 0.09 0.1 0.87 

7 1.15 1.00 0.87 0.08 0.1 0.79 

8 1.25 1.00 0.80 0.07 0.1 0.73 

9 1.35 1.00 0.74 0.07 0.1 0.68 

10 1.45 1.00 0.69 0.06 0.1 0.63 

Beyond the effects on the relative influence of individual feature, it is interesting to see 

what the overall influence of the feature SD errors is on the overall composite scores. The 

correlation between the two composite scores in this simulation was practically perfect (.995). 

Considering the relatively large errors that were examined in this simulation and the relatively 

small fluctuations in feature SDs that can be expected in practice (see previous section), it seems 

that feature standardization would not constitute a detrimental factor on the quality of PP 

scoring. 
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Standard Error of Means for the Scaling Procedure 

The final scaling of the standardized weighted scores is primarily based on the 

discrepancy between the mean of standardized weighted scores and human scores for a sample of 

benchmark essays. For a given sample of essays and of their corresponding initial e-rater scores, 

the sample mean of human scores is only an estimate of that value over all possible human raters 

and is subject to sampling error. In order to evaluate how small that sample can be, it is 

important to estimate the SD of the sample mean, the standard error of the means (σM). 

The value of σM can be estimated from a single sample by the formula in Equation 4: 

H
M n

σσ =  (4) 

Where σH is the SD of the human scores (each score is the average of all its human ratings) and n 

is the number of essays in the sample. It should be noted that the number of raters that rate every 

essay influence the value of σH, with smaller values for higher number of raters. 

In the case of PP scoring, each human score is related to a standardized weighted score. 

Thus, the conditional distributions of human scores given their initial standardized weighted 

scores have smaller variability than the SD of a random sample of human scores. Their SD is 

equal to the standard error of estimating human scores from e-rater scores. The standard error of 

estimate when predicting a human score H from a given value of e-rater score E is denoted σH.E 

and computed as shown in Equation 5: 

2
. 1 HEHEH ρσσ −=  (5) 

Where σH is the SD of the human scores and ρHE is the correlation between human and e-rater 

scores. 

Finally, ρHE, the correlation between human scores and e-rater scores, can be shown to 

be dependent on the correlation between a human score based on a single human rating and the 

e-rater scores (ρSE), the reliability of human scores based on a single rating (ρSS), and the number 

of raters (k). This follows from the correction for attenuation formula for validity coefficients 

and from the Spearman-Brown formula for the reliability of a composite (see Lord & Novick, 
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1968, p. 114, for a discussion of the effect of test length on the correlation between two 

variables). 

Specifically, the correlation between the human and e-rater scores is related to their true-

score correlations and their reliabilities, as shown in Equation 6: 

H EHE T T HH EEρ ρ ρ ρ=  (6) 

Since the true-score correlation is not influenced by the number of raters that form the human 

scores, the relation between ρSE and ρHE is related only to the increased reliability of human 

scores based on more raters, through the Spearman-Brown formula shown in Equation 7: 

1 ( 1)
SS

HH
SS

k
k
ρρ

ρ
=

+ −
 (7) 

Therefore, using the Spearman-Brown formula, we can express the relation between ρSE and ρHE 

as Equation 8: 

1 ( 1)HE SE
SS

k
k

ρ ρ
ρ

=
+ −

 (8) 

The standard error of the mean of the human scores that are assigned to the scaling sample is 

given by Equation 9: 

nn
HEHEH

M

2
. 1 ρσσ

σ
−

==  (9) 

Where the previous formula can be plugged into ρHE. 

The two parameters that affect the size of σM are the sample size of essays n and the 

number of raters that score each essay k. This is apart from σH, ρSE, and ρSS, which can be 

regarded as constants in a specific application. 

Figure 1 shows the actual values of σM for typical n and k values, when σH for a single 

rater (k = 1) was set to 1.0 points; ρSE was set to .80, a typical correlation between a single 

human rating and machine scores; and ρSS was set to .64.  
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Figure 1. Standard error of means for various number of essays (N) and number of raters (K). 

Figure 1 shows that the gain in σM by using more than 20 essays or more than 5 raters is 

very small. For 20 essays and 5 raters, the calculated σM is .06. For 50 essays and 5 raters, the 

calculated σM is .04. 

It is instructive to compare a typical σM value under PP scoring, where it is determined by 

σH.E, to theσM that would be obtained if a random sample of human scores was used to scale the 

e-rater scores, based on σH (see Equation 4). The difference between a PP-based σM and an EP-

based σM is dependent on the value of ρHE (higher values lower the PP-based σM), which in turn 

depends on k (higher number of raters raises the value of ρHE). Beginning with the original value 

of ρHE (or ρSE) for one rater (.80), the value of ρHE is .88 for two raters, .92 for three raters, .94 

for four raters, and .97 for 10 raters. 

Based on these values of ρHE, we can compute how much larger σH would be than σHE 

for different numbers of raters. From that, we can deduce how much larger the EP sample size 

would have to be, compared to the PP sample size, to have the same σM. Higher number of raters 

entail a larger advantage for EP scoring in terms of sample size. For example, for two raters, σH 

will be more than two times (2.1) larger than σHE. In other words, under EP scoring, we would 

need a random sample 4.5 times (2.12) larger to get the same σM under EP scoring. For five 

raters, σH will be more than three times (3.2) larger than σHE. Thus, under EP scoring we would 
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need a random sample more than 10 times (3.22) larger to get the same σM under EP scoring. 

These are very significant gains in sample sizes required for developing a new scoring 

application. 

Evaluations of PP Scoring 

In this section, several empirical evaluations of PP scoring are presented. In all these 

evaluations, real essay data were used to develop scores based on previous parameters and, for 

scaling, on very small sets of training samples. The agreement between these PP scores and 

human scores was compared to the agreement performance of other scores, either EP scores or 

human scores. 

The K–12 Experiment 

In the first evaluation, PP scoring was applied to samples of essays written by students 

using the Criterion application at different grades (see Table 4). The dataset included about 

7,600 essays written on 36 topics from Grades 6–12, with an average of about 200 essays per 

topic and 5 topics per grade. The essays were scored by two trained human raters according to 

grade-level rubrics. 

Table 4 

Descriptive Statistics on Essays and Average Human Score 

Grade Prompts 

Mean # of 

essays per 

prompt M SD 

6 5 203 3.01 1.16 

7 4 212 3.21 1.20 

8 5 218 3.50 1.29 

9 4 203 3.65 1.24 

10 7 217 3.39 1.23 

11 6 212 3.90 1.08 

12 5 203 3.61 1.22 
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PP scoring was applied in the following manner. The parameters that would be used for 

PP scoring were obtained from a single EP model that was built for all ninth-grade essays in the 

sample. The following optimal weights were obtained for this EP model: grammar, 11%; usage, 

15%; mechanics, 11%; style, 8%; organization, 28%; development, 13%; vocabulary, 9%; and 

word length, 6%. These relative weights, together with the feature distributions for ninth-grade 

essays, were used throughout the experiment. 

For each of the remaining 32 topics (from Grades 6–8 and 10–12), a random sample of 

30 essays was chosen as the prompt-specific scaling sample for PP scoring. For each of the 

essays in the scaling sample, a standardized weighted score was computed (based on the 

parameters from the ninth-grade model) in addition to the human scores available for the essays. 

As described above, the discrepancy between the human scores and the standardized weighted 

scores was used to produce the scaling parameters for new essays. Both the predetermined 

parameters and the scaling parameters then were applied to the remaining essays of the prompt. 

For comparison with the PP scoring, EP e-rater scoring was implemented on the 

remaining essays from each topic (excluding the 30 essays in the PP scaling sample). A six-fold 

method was used for building and cross-validating EP scoring. In this method the e-rater model 

is built on 5/6 of all essays, and then the model is applied to the 1/6 of essays that were left out. 

The procedure is repeated six times. 

Table 5 presents a summary of the results in comparing PP and EP performances on the 

cross-validation samples (for EP scoring, every essay is used once in a cross-validation sample). 

Table 5 shows that the PP approach performance based on 30 essays is very similar to the EP 

performance that was based on around 150 essays (5/6 of the remaining essays). 

Table 5 

Summary of Model Performance, Relation Between e-rater and Human Scores, for 32 Topics 

Scoring Kappa Correlation Exact agreement 

Estimated parameters .39 .78 .53 

predetermined-parameters .38 .78 .52 
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The State Assessment Experiment 

The purpose of the Indiana experiment was to evaluate the PP scoring approach in a 

context where content experts score benchmark essays specifically for e-rater PP scoring. In the 

previous evaluation, the human scores were given and were produced as part of a previous 

research effort. The writing assessment that was used in this evaluation was Indiana’s Core 40 

End-of-Course Assessment in English 11 writing test. This test is scored operationally by 

e-rater. The raters were 12 Indiana teachers chosen to conduct the scaling sessions. 

The data used for this experiment included four sources: 

1.   Source of standardization and weighting parameters: All 11th-grade essays in the 

Criterion application dataset described above were used to develop an EP e-rater 

model, from which parameters were retrieved. 

2.   Topics: e-rater scoring was developed for two topics. Topic A was the operational 

topic in the spring 2004 administration of the Indiana test, and Topic B was a 

candidate topic for the 2005 administration. 

3.   PP scaling sample: For scaling purposes, the Indiana teachers rated sets of 25 essays. 

Four sets were used, two for Topic A (A1 and A2) and two for Topic B (B1 and B2). 

4.   Validation samples: Two sets of 300 essays were used for validation of PP scoring, 

one for each of the Topics A and B. 

The scoring sessions took place on 2 consecutive days. On the 1st day, after an 

introduction to the Indiana rubrics, the teachers scored each essay in the four scaling sets (25-

essay sets) and discussed their scoring. For each set, the teachers started by individually scoring 

each essay in the set and then continued with discussions of problematic essays, after which they 

could correct their scores (although all scores were recorded). The teachers were allowed to 

assign half-point scores if they wished. 

On the 2nd day, every teacher scored a random sample from the validation sets. The plan 

was that each essay would be scored twice by different raters. However, in practice not all 

validation essays were scored. 

Table 6 presents descriptive statistics for the scaling sample scoring. In addition to the 

average of 12 raters before and after revision, Table 6 shows results of 9 select raters before 

revision. The 3 raters excluded showed biases in their scores compared to the other 9 raters. The 
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differences between the different measures of human ratings were small, but there were 

differences between the first and second set for each topic. The scores for the second set were 

higher than for the first set. The order of scoring on the 1st day was A1, B1, A2, and B2; it seems 

the raters were not calibrated fully from the start of the sessions. 

The last row in Table 6 shows information about the anchor score. The anchor score is 

the e-rater score from the 11th-grade Criterion model, whose parameters were used for PP 

scoring in this experiment. A remarkable result in Table 6 is the very large difference between 

the human scores and the e-rater anchor scores, about .9 even for the A2 and B2 sets. These 

differences indicated that the scoring standards of the human raters were much higher than the 

Criterion scoring standards. The columns labeled r in Table 6 present the correlations between 

average human scores and e-rater anchor scores. These were around .97 and .93 for A2 and B2, 

respectively. 

Table 6 

Descriptive Statistics for Benchmark Scoring 

 A1 A2 B1 B2 

Raters M SD r M SD r M SD r M SD r 

12 raters 2.30 1.25 .91 2.68 1.27 .97 2.59 1.20 .92 2.71 1.42 .94 

9 raters 2.30 1.28 .91 2.75 1.31 .97 2.59 1.27 .91 2.70 1.43 .93 

12 rev. raters 2.22 1.16 .91 2.66 1.24 .97 2.56 1.18 .89 2.69 1.43 .92 

Anchor score 3.60 1.46  3.61 1.48  3.60 1.46  3.58 1.47  

Note. Anchor score is the e-rater score from the 11th-grade Criterion model; r is correlation 

between average human score across raters and e-rater anchor score. All scores on a 1–6 scale. 

Because of the differences in average scores between the first (A1 and B1) and second 

scaling sets (A2 and B2), only A2 and B2 results were used for PP scaling. In addition, the 

average of the 9 raters was used as the basis for scaling instead of the full 12 raters (although 

there were very small differences in the means and SDs of scores). The scaling was performed 

separately for each topic, although, as Table 6 shows, the scaling for the two topics was very 

similar. 
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Table 7 presents the distribution of human and e-rater PP scores for the validation essays. 

The human raters assigned some half-point scores, which were rounded up. Table 7 shows that 

the average PP e-rater scores were higher than the human scores by about 0.2 points and had 

SDs about 0.2 smaller than those of the human scores. 

Table 8 shows the agreement results between human and e-rater scaled scores for the 

evaluation essays. The agreement statistics between the two human raters were very low, and the 

e-rater agreement with the human scores was higher than the interhuman agreement. 

Table 7 

Descriptive Statistics for Validation Scoring, With Human Scores Rounded Up 

Scoring N Mean SD 

Topic A    

H1 288 3.26 1.18

H2 289 3.26 1.17

e-rater 291 3.11 1.03

Topic B    

H1 264 3.13 1.22

H2 263 3.07 1.21

e-rater 266 2.92 1.03

Note. H1 and H2 are first and second human scores. e-rater score is the scaled score based on PP 

scoring. 

Table 8 

Agreement Results for Validation Scoring (Human Scores Rounded) 

 Kappa Correlation 

Exact 

agreement 

H1-Scaled .27 .64 .45 

H2-Scaled .26 .65 .45 

H1-H2 .19 .59 .38 
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A Computerized Interface for On-the-Fly Modeling 

The principles that underlie the PP scoring approach could be implemented through a 

computerized interface that allows users to customize e-rater scoring through example essays of 

the user’s choice. Such an interface was developed as a Web-based application that allows users 

to load benchmark essays and adjust the scoring parameters to produce a customized e-rater 

scoring model. Figure 2 shows a screen-capture from this application. After loading a few 

benchmark essays (Step 1), the user determines relative weights to each of the dimensions 

measured by e-rater (Step 2; in this application, the word length feature was not represented). 

Then the scoring standards (Step 3) and score variability (the difference in scores between essays 

with different qualities, Step 4) are adjusted. These adjustments are reflected continuously in the 

essay scores to the left of the essay text. Finally, the user can select a reference program 

(Criterion’s ninth-grade program is shown in Figure 2) to see immediately the effect of the 

changing standards on the entire distribution of scores for this program. The score distribution is 

also updated continuously with any adjustments in scoring standards. 

 

Figure 2. On-the-fly modeling application, ninth-grade Criterion program. 
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The application computes scores in the following way. Feature distributions and 

intercorrelations are based on the large dataset that was described in the beginning of the 

Statistical Issues section of this paper. All parameters are computed from the average statistic 

values across the 64 prompts. By combining these parameters with the relative weights chosen 

by the user in Step 2, the standardized weighted scores can be computed. The adjustments in 

Steps 3 and 4 change the scaling parameters of the final scores. The score distributions of 

specific programs in Step 5 are approximated from the feature distributions of each program. 

The GRE Experiment 

The purpose of this experiment was to evaluate PP scoring with content experts who use 

the computerized interface with a very small number of benchmark essays. Five GRE test 

developers used this application to develop a scoring model for a single topic, “Present Your 

Perspective on an Issue.” Each rater used the application five times with different sets of 

benchmark essays. Each set included five essays. The models developed for each set by the 

raters were validated on a validation set of about 500 essays. All benchmark and validation 

essays were scored previously by two raters. 

The procedure each rater followed was to load in turn the essays from each set and adjust 

the scoring standards and score variability of the essays. The raters did not adjust the component 

weights, which were set to the values shown in Figure 2. 

The application was slightly altered in order to prevent the raters from copying their 

settings from one benchmark set to the other. Every time a set of essays was loaded into the 

application, the scaling of the two sliders in Steps 3 and 4 of Figure 2 were changed randomly, so 

that the participants would have to find the best settings for every set independently. Therefore, 

if the same set of essays were loaded two different times, and the same setting for the sliders 

were chosen in these two occasions, the scores shown for the essays would be different. 

In addition to scaling through the application, the raters provided independent scores of 

each essay. These scores were not necessarily identical to the application scores, because the 

participants were not able to accommodate any combination of scores in using the application. 

For example, if a participant thought that essay x should get a higher score than essay y but the 

application score of x was lower than y, the participant could not reverse the rank order of the 

two essay scores through the two slides. Such a reversal could be achieved only with changes in 

the relative weights of components, which was not possible in this experiment. The participants 
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reported that such cases where they were not able fully to accommodate their scoring preferences 

were common. 

Table 9 presents the mean and SD of the application scores of each rater for each set. 

Because the essays in each set were not necessarily of the same quality, the average scores of 

different sets, as well as their variability, should not be the same. Similarity of scores should be 

expected between raters (columns). Overall, the most significant differences could be found in 

the lower mean score of Rater 1 and in the higher SD of Rater 4. Rater 1 gave consistently lower 

scores than the other raters, thus this rater’s results were not included in the computation of the 

scaling parameters. 

Table 9 

Descriptive Statistics for Application Scores 

 Mean SD 

 Rater  Rater  

Set 1 2 3 4 5 All 1 2 3 4 5 All

1 2.4 3.6 3.3 3.4 3.4 3.2 1.3 1.0 1.1 2.0 1.5 1.4 

2 2.8 3.5 3.4 3.4 3.3 3.3 1.3 1.1 1.3 1.3 1.2 1.2 

3 3.2 3.3 3.8 3.7 3.5 3.5 1.0 1.0 1.0 1.2 1.2 1.1 

4 3.4 4.4 3.8 4.0 3.5 3.8 1.0 0.9 1.0 1.5 0.9 1.1 

5 3.2 3.7 3.9 4.0 3.0 3.6 0.7 0.6 0.7 0.9 0.6 0.7 

All 3.0 3.7 3.6 3.7 3.4 3.5 1.0 0.9 1.0 1.4 1.1 1.1 

Table 10 presents the same information about the independent scores of the raters. The 

independent scores were somewhat lower and more variable than the application scores. Note 

also that the independent scores of Rater 1 were closer to the scores of the other raters than the 

scaled scores are. The results of Tables 9 and 10 also can be compared with the original human 

scores for the benchmark essays. Table 11 presents the mean and SD of the average of the two 

human scores for each set. Table 11 shows that the original human scores were higher than the 

new panel scores.   
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Table 10 

Descriptive Statistics for Independent Scores 

 Mean SD 

 Rater  Rater  

Set 1 2 3 4 5 All 1 2 3 4 5 All

1 2.6 3.1 3.3 2.9 3.3 3.0 1.5 1.1 0.9 1.7 1.7 1.4

2 3.1 3.5 3.3 3.2 3.3 3.3 2.0 1.6 1.4 1.6 1.5 1.6

3 3.1 3.4 3.5 3.5 3.5 3.4 0.8 1.2 1.1 1.8 1.2 1.2

4 3.6 3.7 3.6 3.5 3.5 3.6 1.5 1.1 1.1 1.6 1.3 1.3

5 3.5 3.8 3.8 3.2 3.4 3.5 1.6 1.1 1.0 1.8 1.0 1.3

All 3.2 3.5 3.5 3.3 3.4 3.4 1.5 1.2 1.1 1.7 1.3 1.4

Table 11 

Descriptive Statistics for Original Human Scores 

 Mean SD 

Set 1 3.7 1.4 

Set 2 3.6 1.4 

Set 3 3.8 1.4 

Set 4 3.9 1.5 

Set 5 3.9 1.4 

All 3.8 1.4 

The scores (both application and independent) that the raters produced for the benchmark 

essays were used as the scaling sample to generate e-rater scores for the validation set of 496 

essays that were available for this topic. The scaling parameters were determined for each set 

separately based on the scores of Raters 2–5. 

Table 12 summarizes the agreement results of various scores with the operational H1 

score on the validation set. The first score to be compared with H1 is H2, the second operational 

human score for these essays. Next is an e-rater EP score based on optimal weights that was 

developed from the validation sample. The third score is an e-rater EP score, which was 

developed from the validation sample but with the same (nonoptimal) weights that were used in 
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the application (see Figure 2) by the raters. Following these scores are the application and 

independent e-rater scores from the five scaling sets. 

Table 12 

Agreement With Operational H1 (M = 3.5, SD = 1.0) on Validation Sample 

Set M SD Kappa 

Exact 

agreement Correlation 

H2 3.6 1.0 0.68 0.76 0.89 

EP optimal 3.5 1.0 0.54 0.66 0.83 

EP semi-optimal 3.5 1.1 0.43 0.58 0.78 

PP application      

Set 1 3.6 1.0 0.41 0.57 0.77 

Set 2 3.3 1.1 0.39 0.55 0.79 

Set 3 3.8 1.1 0.33 0.50 0.79 

Set 4 3.2 1.0 0.38 0.55 0.79 

Set 5 3.3 1.0 0.40 0.56 0.79 

PP independent      

Set 1 3.3 0.9 0.43 0.59 0.79 

Set 2 3.2 1.2 0.33 0.49 0.80 

Set 3 3.8 1.4 0.27 0.43 0.81 

Set 4 2.8 1.1 0.13 0.33 0.79 

Set 5 3.0 1.5 0.20 0.36 0.80 

Table 12 shows that the human agreement (H1/H2) was significantly higher than any of 

the human-to-machine agreements. Even the EP optimal scores showed lower agreement with 

H2 than H1 did, and the optimal scores performed better than the semi-optimal scores. 

Semi-optimal EP score performance can be used as benchmark for PP score performance 

because they share the same relative weights. The average kappa for the application scores was 

.38, and the average kappa for the independent scores was .27. It seems that the main reason for 

lower performance of PP scores was discrepancies in the mean and SDs of scores, compared 

with the human scores. This was most evident with independent scores. The scaling of 
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application scores was more consistent and similar to that of the human scores. Considering the 

very small sample the application scores were based on (4 raters and five essays), their level of 

agreement with human scores is remarkable. 

Summary 

The three evaluations that were presented in this paper were significantly different from 

each other, but all three provided evidence that the on-the-fly approach is feasible. The Criterion 

simulation was based on samples of 30 essays and used actual operational scores, two per essay. 

The PP performance results were almost identical to EP performance based on around 200 

essays. The Indiana evaluation was based on new scores produced by 9 raters for training 

samples of 25 essays. The human–machine agreement of the PP scores on the validation data 

was comparable to the human–human agreement. Finally, the GRE evaluation was based on new 

scores for five essays by 4 raters and was validated on previously available operational scores. 

Although in this evaluation the agreement of the PP scores with human scores fell below human–

human agreement, it was only slightly lower than the agreement of an optimal model with the 

same feature weights as the PP scores. 

This rapid approach to e-rater modeling may be used by prospective users either to 

customize e-rater to a new assessment or to adapt the scoring standards of an existing 

assessment. An example of the former is a state assessment considering the use of e-rater. An 

example of the latter is teachers interested in adjusting scoring standards for their students who 

use an application like Criterion. In either case, the essays used for the customization can be 

provided by the application itself or loaded by the user. As a first step in the implementation of 

such a system, Redman, Leahy, and Jackanthal (2006) performed a usability study of the 

application with Criterion teachers. They reported that the teachers were very enthusiastic about 

using the computerized application for customizing the e-rater standards used to score their 

students’ essays. It is also clear that a detailed user manual would have to be created for teachers 

to use this application. 

This paper does not provide a definite answer to the question of how many essays and 

raters are needed to achieve reasonable confidence in the accuracy of standards. The answer to 

this question also depends on the stakes involved in scoring decisions. However, Figure 1 

suggests that the effect of increasing the number of essays is stronger than an increase in the 

number of raters; this is similar to the finding that an increase of one to the number of essays in a 
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writing assessment has a larger effect on reliability than an increase of one to the number of 

raters per essay (Breland, Camp, Jones, Morris, & Rock, 1987). The three experiments do not 

allow a systematic evaluation of this hypothesis. In the K–12 experiment, 30 essays and 2 ratings 

per essay were used. In the state assessment experiment, 25 essays and 9 ratings per essay were 

used. In the GRE experiment, 5 essays and 4 ratings per essay were used. An interesting 

replication of the GRE experiment that would test the minimal settings for customization could 

use 10 essays instead of 5. 

Two scoring and scaling approaches were used in the evaluations. The state assessment 

raters scored each essay independently of others and did not directly set e-rater standards. The 

GRE raters, on the other hand, directly set standards in a computerized interface, and their scores 

were derived collectively from these standards. It seems that the “standards-first” approach is 

more suited to small numbers of essays, but it also may be more frustrating to users because they 

are not free to set individual essay scores. 

The computerized interface allows a third approach to scaling that relies on the ability to 

examine the resulting score distributions of reference programs as scoring standards are being 

changed. This ability could serve as an important tool for potential users. In certain applications, 

the scoring of example essays could serve only a secondary purpose of providing examples of 

the standards, whereas the main adjustments of standards are performed vis-à-vis the reference 

programs deemed relevant to the user. 

24 



References 

Attali, Y., & Burstein, J. (2006). Automated essay scoring with e-rater® V.2. Journal of 

Technology, Learning, and Assessment, 4(3). Retrieved October 12, 2007, from 

http://www.jtla.org 

Ben-Simon, A., & Bennett, R.E. (2006, April). Toward theoretically meaningful automated 

essay scoring. Paper presented at the annual meeting of the National Council of 

Measurement in Education, San Francisco. 

Breland, H. M., Camp, R., Jones, R. J., Morris, M. M., & Rock, D. A. (1987). Assessing writing 

skill (Research Monograph No. 11). New York: College Entrance Examination Board. 

Burstein, J. C., Kukich, K., Wolff, S., Lu, C., & Chodorow, M. (1998, April). Computer analysis 

of essays. Paper presented at the annual meeting of the National Council of Measurement 

in Education, San Diego, CA. 

Elliot, S. M. (2001, April). IntelliMetric: From here to validity. Paper presented at the annual 

meeting of the American Educational Research Association, Seattle, WA. 

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). Introduction to latent semantic analysis. 

Discourse Processes, 25, 259-284. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: 

Addison-Wesley. 

Page, E. B. (1966). The imminence of grading essays by computer. Phi Delta Kappan, 48, 238-243. 

Page, E. B. (1994). Computer grading of student prose, using modern concepts and software. 

Journal of Experimental Education, 62, 127-142. 

Redman, M., Leahy, S., & Jackanthal, A. (2006). A usability study of a customized e-rater score 

modeling prototype. Unpublished manuscript, ETS. 

25 


	Description of e-rater Scoring and the On-the-Fly Application
	 Scoring Example
	Determining Feature Weights On-the-fly
	 Determining Feature Distributions On-the-Fly
	Determining Final Scaling Parameters

	Statistical Issues
	Expected Magnitude of Errors in Predetermined Parameters
	Effect of Errors in Feature SDs on Relative Weights
	Standard Error of Means for the Scaling Procedure

	Evaluations of PP Scoring
	The K–12 Experiment
	 The State Assessment Experiment
	 A Computerized Interface for On-the-Fly Modeling
	The GRE Experiment

	Summary
	 References



